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A position-dependent stochastic diffusion model of gating in ion channels is developed by considering the
spatial variation of the diffusion coefficient between the closed and open states. It is assumed that a sensor
which regulates the opening of the ion channel experiences Brownian motion in a closed region Rc and a
transition region Rm, where the dynamics is described by probability densities pc�x , t� and pm�x , t� which satisfy
interacting Fokker-Planck equations with diffusion coefficient Dc�x�=Dc exp��cx� and Dm�x�=Dm exp�−�mx�.
The analytical solution of the coupled equations may be approximated by the lowest frequency relaxation, a
short time after the application of a depolarizing voltage clamp, when Dm�Dc or the diffusion parameter �m

is sufficiently large. Thus, an empirical rate equation that describes gating transitions may be derived from a
stochastic diffusion model if there is a large diffusion �or potential� barrier between open and closed states.
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I. INTRODUCTION

Voltage and ligand gated channels play an important role
in initiating and modulating the subthreshold response and
the action potential in nerve and muscle membranes �1�. For
many years the dynamics of the transition between the closed
and open states of voltage-dependent channels have been de-
scribed by an empirical rate equation,

dPo�t�
dt

= � − �� + ��Po�t� , �1�

where � and � are opening and closing transition rates and
Po�t� is the open state probability �2�. The dwell-time distri-
bution for the open state of a nicotinic acetylcholine �nACh�
ion channel is also an exponential function fo�t� and is asso-
ciated with the decay of the muscle endplate current �3�. If
the ion channel sensor has multiple closed states and an open
state, it is assumed that the dynamics of the system is de-
scribed by a master equation. Although the discrete state
Markov model has been successful in describing ionic and
gating currents across the membrane, and closed and open
dwell-time distributions in ion channels �1,4,5�, it does not
take account of the Brownian motion of large protein mol-
ecules in the energy landscape �6�.

The open or closed state dwell-time distribution f�t� ob-
tained from the patch clamp recording of stochastic current
pulses in ion channels may be represented by a finite sum of
exponential functions of time, and for several ion channels,
f�t� may be approximated by a power law t−p−1 for interme-
diate times �7,8�. In order to account for multiple relaxation
times and the emergence of a power-law approximation to
the dwell-time distribution, both discrete �9–12� and continu-
ous �13–16� diffusion models have been proposed, and if it is
further assumed that there is an increasing barrier height and
decreasing energy away from the open state, general power
laws and a rate-amplitude correlation may be derived
�17,18�. For a Ca-dependent K channel, the non-Markovian
character of the current fluctuations and the dwell-time dis-

tribution power-law behavior �19,20� may be described by a
fractional diffusion model of ion channel gating �21�.

A numerical solution to a Smoluchowski equation for a
voltage-dependent channel has shown that a large potential
barrier between states ensures that the closed state is Mar-
kovian with a well-defined escape rate. The gating current
has been computed for an energy landscape with potential
barriers and a spatially inhomogeneous diffusion coefficient
and is in qualitative agreement with experimental data �22�.
The objective of the paper is to derive an analytical solution
of the interacting Fokker-Planck equations for a closed re-
gion Rc and transition region Rm in response to a depolariz-
ing voltage clamp, and to show that the solution has a single
dominant relaxation time when Dm�Dc or the diffusion pa-
rameter �m is sufficiently large.

II. STOCHASTIC DIFFUSION MODEL
OF ION CHANNEL GATING

The opening of ligand and voltage activated ion channels
is dependent on the conformation of a sensor which is com-
prised of, in general, several macromolecules which may un-
dergo rotation and translation between each surface of the
membrane �1,23�. It is assumed that the sensor experiences
Brownian motion in a closed state region Rc�−dc�x�0�,
and a transition region Rm�0�x�dm�, adjacent to the open
state, with the dynamics described by the probability densi-
ties pc�x , t� and pm�x , t� which satisfy Fokker-Planck �or
Smoluchowski� equations �24,25�,

�pc�x,t�
�t

=
�

�x
�Dc�x�� �pc�x,t�

�x
+

�Uc�x�
�x

pc�x,t��� , �2�

�pm�x,t�
�t

=
�

�x
�Dm�x�� �pm�x,t�

�x
+

�Um�x�
�x

pm�x,t��� , �3�

where Uc�x� and Um�x� are potential functions. The diffusion
coefficient Dc�x�=Dc exp��cx�, Dm�x�=Dm exp�−�mx�, �c
and �m are constants, and either Dc=Dm or there is a discon-
tinuity at the interface between Rc and Rm �see Fig. 1�. For
Markovian ion channels, the power-law approximation to the*svaccaro@physics.adelaide.edu.au
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dwell-time distribution is dependent on the variation in bar-
rier height between closed states �18�, and therefore we may
consider the effect of the diffusion parameters Dm and �m in
the transition region on the gating dynamics of an ion chan-
nel.

The diffusion in the region Rc is confined by the inner
surface of the membrane, and therefore a reflecting boundary
is imposed at x=−dc,

�pc�x,t�
�x

+ Uc�pc�x,t� = 0, �4�

where �Uc�x��x is assumed to be a constant Uc�. Only unidi-
rectional transitions from the closed to the open state are
considered and therefore pm�dm , t�=0. It may be assumed
that the probability current and the probability density are
continuous at the interface between Rm and Rc,

jc�0,t� = jm�0,t� , �5�

pc�0,t� = pm�0,t� . �6�

The dwell time for each region is Tc=	0
�Pc�t�dt and Tm

=	0
�Pm�t�dt where the survival probabilities Pc�t�

=	−dc

0 pc�x , t�dx and Pm�t�=	0
dmpm�x , t�dx �5�. The ion channel

is initially in a hyperpolarized state �Pc�0�=1� and hence the
initial condition may be specified as pc�x ,0�=��x� and
pm�x ,0�=0, and we may assume that the ion channel is de-
polarized to a membrane clamp potential of V=Vf for which
Uc�x� and Um�x� are independent of x.

The relative amplitude of the multiple relaxation times
may be determined by solving Eqs. �2� and �3� with the
initial and boundary conditions using the method of Laplace
transforms. Defining z=z0 exp�−�cx /2�, z0=2 / ��c


Dc�, zd

=z0 exp��cdc /2�, y=y0 exp��mx /2�, y0=2 / ��m

Dm�, yd

=y0 exp��mdm /2�, pc�x , t�=zuc�z , t�, and pm�x , t�=yum�y , t�,
Eqs. �2� and �3� may be expressed as Bessel differential
equations, and it may be shown that the probability that the
sensor is in the region Rc and Rm is

Pcm�t� = �
−dc

dm

p�x,t�dx = �
i=1

�

ai exp�− 	it� , �7�

where 	i=
i
2,
i��
i+1� is a solution of the eigenvalue equa-

tion

S0�
i,z0,zd�S1�
i,y0,yd�
C0�
i,z0,zd�C0�
i,yd,y0�

=
Dm

Dc
, �8�

C0�
i ,z0 ,zd� and S��
i ,z0 ,zd� for �=0 or 1 are defined in
terms of Bessel functions of the first and second kinds,

C0�
i,z1,z2� = J1�
iz1�Y0�
iz2� − Y1�
iz1�J0�
iz2� ,

S��
i,z1,z2� = J��
iz1�Y��
iz2� − Y��
iz1�J��
iz2� ,

with similar definitions for the parameters y1 and y2,

ai =
2C0�
i,yd,yd�

C0�
i,yd,y0��h1�
i� + h2�
i� + h3�
i� + h4�
i��
,

h1�
� =
1

S0�
,z0,zd�
d�
S0�
,z0,zd��

d

,

h2�
� =
1

S1�
,y0,yd�
d�
S1�
,y0,yd��

d

,

h3�
� = −
1

C0�
,z0,zd�
d�
C0�
,z0,zd��

d

,

h4�
� = −
1

C0�
,yd,y0�
d�
C0�
,yd,y0��

d

. �9�

Adopting a small argument approximation for the Bessel
functions �26�, from the solution �7�

Tc =
dc�exp��mdm� − 1�

Dm�m
. �10�

From Eqs. �7� and �8�, if �c and �m are sufficiently small it
may be shown that 	1Dm /dcdm1 /Tc and

1

a1


1

2

sin 
m/Tc


m/Tc
�1 +

m

Tc
+

m

Tc

cos2 
m/Tc

sin2 
m/Tc
�1 +

c

Tc
�� ,

�11�

where m=dm
2 /Dm and c=dc

2 /Dc. Therefore Pcm�t� may be
approximated by the lowest frequency component with open-
ing rate �1 /Tc when c�Tc and m�Tc or equivalently

Dm

Dc
�

dm

dc
� 1, �12�

and is in good agreement with the survival probability of the
slow closed state for a delayed rectifier K channel, after
eliminating the fast closed component with a low frequency
filter �27� �see Fig. 2�. The relation dm�dc may be obtained
from the voltage dependence of the mean closed time for an
interacting diffusion regime �15� or from the requirement
that the probability current in the transition region is quasis-
tationary �18�, and c�Tc is also satisfied when there is a
large potential barrier in the region Rm. A short time after the
application of the voltage clamp, the spatial variation of the
probability density p�x , t� is approximately linear in the re-
gion Rm �see Fig. 3� and therefore the probability current is
constant within the transition region.

�dc 0 dm
x

Rc Rm

�Γmdm

0

l
n

�
D

�
x

�
�
D
c
�

FIG. 1. The diffusion coefficient D�x� within Rc and Rm may be
continuous �dotted line� or there may be a discontinuity at the in-
terface x=0 �solid line�.
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By assuming that Dc�x�=Dm�x�=D and dm�dc, it follows
that Tc=cdm /dc�c, and the dwell-time distribution for in-
termediate times may be described by a power law �see Fig.
4� �9,11,15�, as observed in several types of ion channels for
the closed states accessible from the open state during a de-
polarizing patch clamp. However, it should be noted that the
closed states associated with a power-law approximation to
the dwell-time distribution are, generally, not the same as
those in the activation sequence �28�.

If Dm=Dc, �cdc�1, and �mdm�1, adopting a small argu-
ment approximation in Rm and large argument approximation
in Rc �26�, it may be shown from Eqs. �7� and �8� that

1

	1


dc�exp��mdm� − 1�
Dm�m

 Tc, �13�

1

a1
 1 +

�mdc

2�exp��mdm� − 1�
, �14�

and thus a11 and ai0 for i�1 when

�mdm

exp��mdm� − 1
�

dm

dc
, �15�

or from Eq. �10�, c�Tc. Therefore, when �m is sufficiently
large, Pcm�t�exp�−	1t�, and in agreement with the data
from a delayed rectifier channel �27� �see Fig. 5�.

III. DISCUSSION

Gating in voltage or ligand activated ion channels is regu-
lated, in general, by several macromolecules which experi-
ence Brownian motion in the closed and open regions, where
the dynamics may be described by probability densities
which satisfy interacting Fokker-Planck equations. We have
shown that a single dominant relaxation time may be derived
from a position-dependent stochastic diffusion model when
there is a discontinuity in the diffusion coefficient at the in-
terface between the regions Rm and Rc with Dm�Dc, and the
width of the transition region �dm� is much less than the
width of the closed region �dc�. These conditions ensure that
c�Tc and m�Tc, and therefore the Brownian motion in
the closed and transition regions may be described as quasis-
tationary. The small relative value of dm is consistent with
recent experimental data that indicate that each S4 sensor has
a translation of the order of 6 Å across a focused electric
field �29�. If Dm�x�=Dm exp�−�mx�, the response of the sys-
tem to a depolarizing voltage clamp may also be approxi-
mated by the lowest frequency relaxation when the diffusion
parameter �m is sufficiently large.

0 20 40 60 80 100
t �ms�

0

1

P
c
m

FIG. 4. The survival probability Pcm�t� �solid line� and
the lowest frequency component a1 exp�−	1t� �dotted line�
where dm /dc=0.15, Dc=Dm, Tc=24 ms, �c, �m→0,
ai= �0.259,0.245,0.218, . . . �, and 	i= �0.012,0.105,0.292, . . . �.
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FIG. 5. The survival probability of the slow closed state
for a delayed rectifier K channel �27� �dotted line� and the
analytical solution Pcm�t� �solid line� where dm /dc=0.15,
�c→0, �mdm=6, c=2.2 ms, ai= �0.984,0.055,−0.030, . . . �, and
	i= �0.04,3.5,7.48, . . . �.
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FIG. 2. The survival probability of the slow closed state for
a delayed rectifier K channel �27� �dotted line� and the analytical
solution Pcm�t� �solid line� where dm /dc=0.15, Dm /Dc=0.0225,
c=3.4 ms, �c, �m→0, ai= �0.977,0.130,−0.103, . . . �, and
	i= �0.040,2.26,3.62, . . . �.
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dc
�1
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�

FIG. 3. The probablility density p�x , t� in the region
Rc�−dc�x�0� and Rm�0�x�dm� for t1=2 ms �solid line� and
t2=20 ms �dotted line� where dm /dc=0.15, Dm /Dc=0.0225,
c=3.4 ms, �c, �m→0.
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If the opening of the ion channel is determined by m
identical and independent subunits and the conductance of
the channel is expressed as g� Po�t�m �2�, a rate equation
may be derived for each subunit when there is a large diffu-
sion or potential barrier between the closed and open con-
figurations of each sensor molecule. When the closed state

dwell-time distribution obtained from a patch clamp record-
ing has a finite number of relaxation times, the closed states
may be represented as energy wells between potential or dif-
fusion barriers within an energy landscape, and the resulting
system of interacting Fokker-Planck equations may be ap-
proximated by a Markovian master equation.

�1� B. Hille, Ion Channels of Excitable Membranes, 3rd ed.
�Sinauer, Sunderland, MA, 2001�.

�2� A. L. Hodgkin and A. F. Huxley, J. Physiol. �London� 117,
500 �1952�.

�3� C. R. Anderson and C. F. Stevens, J. Physiol. �London� 235,
655 �1973�.

�4� M. S. P. Sansom, F. G. Ball, C. J. Kerry, R. McGee, R. L.
Ramsey, and P. N. R. Usherwood, Biophys. J. 56, 1229
�1989�.

�5� D. Colquhoun and A. Hawkes, in Single Channel Recording,
edited by B. Sakmann and E. Neher �Plenum, New York,
1995�, pp. 397–482.

�6� H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, Science 254,
1598 �1991�.

�7� G. L. Millhauser, E. E. Salpeter, and R. E. Oswald, Biophys. J.
54, 1165 �1988�.

�8� T. F. Nonnenmacher and D. J. F. Nonnenmacher, Phys. Lett. A
140, 323 �1989�.

�9� G. L. Millhauser, E. E. Salpeter, and R. E. Oswald, Proc. Natl.
Acad. Sci. U.S.A. 85, 1503 �1988�.

�10� P. Lauger, Biophys. J. 53, 877 �1988�.
�11� C. A. Condat and J. Jackle, Biophys. J. 55, 915 �1989�.
�12� L. S. Liebovitch, Math. Biosci. 93, 97 �1989�.
�13� D. G. Levitt, Biophys. J. 55, 489 �1989�.

�14� W. Nadler and D. L. Stein, Proc. Natl. Acad. Sci. U.S.A. 88,
6750 �1991�.

�15� I. Goychuk and P. Hanggi, Proc. Natl. Acad. Sci. U.S.A. 99,
3552 �2002�.

�16� I. Goychuk and P. Hanggi, Physica A 325, 9 �2003�.
�17� S. R. Vaccaro, Phys. Lett. A 368, 480 �2007�.
�18� S. R. Vaccaro, Phys. Rev. E 76, 011923 �2007�.
�19� A. Fulinski, Z. Grzywna, I. Mellor, Z. Siwy, and P. N. R.

Usherwood, Phys. Rev. E 58, 919 �1998�.
�20� S. Mercik and K. Weron, Phys. Rev. E 63, 051910 �2001�.
�21� I. Goychuk and P. Hanggi, Phys. Rev. E 70, 051915 �2004�.
�22� D. Sigg, H. Qian, and F. Bezanilla, Biophys. J. 76, 782 �1999�.
�23� H. Lecar, H. P. Larrson, and M. Grabe, Biophys. J. 85, 2854

�2003�.
�24� H. A. Kramers, Physica �Amsterdam� 7, 284 �1940�.
�25� H. Risken, The Fokker-Planck Equation �Springer-Verlag, Ber-

lin, 1984�.
�26� M. Abramowitz and I. Stegun, Handbook of Mathematical

Functions �Dover, New York, 1972�.
�27� R. Coronado, R. Latorre, and H. G. Mautner, Biophys. J. 45,

289 �1984�.
�28� T. Hoshi, W. N. Zagotta, and R. W. Aldrich, J. Gen. Physiol.

103, 249 �1994�.
�29� C. A. Ahern and R. Horn, Neuron 48, 25 �2005�.

S. R. VACCARO PHYSICAL REVIEW E 78, 061915 �2008�

061915-4


